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Abstract

The field of complex systems borrows expertise from a multitude of differ-

ent disciplines. In physics our obsession is to detect patterns and build or

identify models for our observation. In this project we looked at financial

markets from the point of view of a complex system in hopes to build

and identify models that describe it’s many complex components using

discrete time series analysis.

We showed that stock price series have small-form decaying memories

that depends on the level of their complexity. We successfully identified

a collection of characteristics in order to describe a series. We applied

linear stochastic models to financial series and found that the description

is adequate in some but not in others. We showed using regression and

cross correlation that certain markets are very closely related, stocks such

as Apple or Google were shown, statistically, to have causation relation

with other stocks within the S&P500 information technology sector. We

found that correlation between stocks also evolves with time, and certain

periods of ’information delay’ exist in were linear correlation takes time

to move between markets.

We applied the BDS test of non-linearity to the industrial and information

technology sector. We found that both series exhibit non-linearity in their

trajectories and as a consequence we rejected the hypothesis of a random

walk market. We calculated the Correlation Dimension, d, of both series

in order to identify low dimensional chaos. We found that d did not

converge in low dimensions and so chaos could not be identified, however

the increase in d was not linear, suggesting that the series may be chaotic

at higher dimensions.

Using inferences we built a mathematical model for the co-movement of

stock price for the information technology and the industrial sector in

the form of a recurrence relation. We tested a number of parameters

on the deterministic model and found that we could not find a stability



in the trajectory. We made stochastic approximations to the model and

found some promise. Simulations showed some similar characteristics as

the original series, however these were not enough to reject independence

with highest confidence. There is potential however, and in this work we

identify some future avenues that could be taken in order to improve the

model.

Finally we looked at influences from outside the system, we applied a

simple, yet novel method of sentiment analysis to financial news data in

order to quantify the effect of world events on the market. We found that

significant linear correlation was present 5 business day (one week) after

a news sources had been published. We found model parameters and our

simulated series successfully rejected the hypothesis of independence with

the original series.
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Chapter 1

Introduction

1.1 Financial Markets

Financial markets are marketplaces where financial instruments are traded with prices

that reflect the law of supply and demand. Often markets refer to particular exchanges

that allow trade between parties for a small transaction cost. Exchanges can be

physical institutions such as New York Stock Exchange (NYSE), or electronic ones

such as the NASDAQ.

Definition 1.1.1. Financial instruments are monetary contract between parties.

Instruments can be traded in many different forms, such as cash (foreign exchange),

stocks or derivatives.

Financial markets are an important topic of study, often they are indicators of

changes in a nation’s economy or social outlook; hence why government bodies apply

regulations and reforms constantly to control the dynamics of markets in order to

better effect national prospects [1]. Furthermore, extensive research is done by insti-

tutions large and small in order gain a better understanding of the financial future

and often, to further their vested interests.

Financial markets are an example of a highly complex system, often they are

thought of as a closed system with a large number of interacting components and

multiple dimensions that effect the dynamics of the market [2]. In the study of

complex systems, we find that much of the same tools that can be used to model a

system in a particular discipline may have important implication and uses in another,

in this way we can define complex systems as a truly interdisciplinary field.
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1.2 Time Series Analysis

A time series is a sequence of observations taken in time; a series is usually observed

in regular time intervals that are equally spaced. In many systems and in fact in

a financial market, the measurements observed are not equally spaced apart, and

analysis on said data without careful consideration may have unwanted implications.

Stock markets operate only on trading days, meaning that over weekends and public

holidays the exchange is closed and no data is published. Daily stock market data

therefore ignores these missed days and treats every iteration as a day apart. Thank-

fully, for stock market data, this has a negligible effect on the outcome of the analysis

and so we can make the assumption that each point point in daily stock market time

series is exactly one day apart.

An intrinsic feature of a time series is that, typically, series observations are depen-

dent and time series analysis is defined as the techniques used to analyse the nature

of said dependence. The requirement for time series analysis is the construction of

stochastic and deterministic models that explain the dynamics of variables over time.

This project focuses on two sectors classified within the S&P500 index [3] listed

companies, the information technology (IT) sector index and the industrial sector

(IND) index. Complementary analysis is also carried out on commodity series’.

Definition 1.2.1. A stock market index a measure of value of a section of a stock

market, typically a special weighted average of all its constituents. The S&P500 is

an index of the 500 biggest companies in the US and bases its calculations on market

capitalisation of each constituents.

For a list of constituents and tickers see [4] and [5].

1.3 Modelling Financial Markets

A mathematical model that expresses change in a system over time is known as a

dynamic model; these models are often represented in the form of a differential or

difference equation. A system can be described by either stochastic or deterministic

models.

Definition 1.3.1. Deterministic processes are dynamic process where any two equa-

tion solutions that agree at one time agree every time [6]. In other words, knowing

model parameters and variables exactly at one time, it is possible to know the exact

position of the variables at another.
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Definition 1.3.2. Stochastic processes have random variables sampled from proba-

bility space in their trajectory, therefore its impossible to know with absolute certainty

the particular value of a measurement at a particular time.

Stochastic processes have different degrees of randomness and can often be seen as

hybrids to deterministic processes when random factors are relatively small, however

even in these processes predictability and forecasting becomes less accurate as the as

the time variable increases, as even tiny random fluctuations would lead to exponen-

tially large uncertainty over long periods. This ties in with a concept in dynamics

known as ergodicity

Definition 1.3.3. Ergodicity defines a dynamic that, independent of starting posi-

tion, would have the same statistical properties over time. Ergodicity in time series

can be deduced from a single, sufficiently long, random sample of the process.

The efficient market hypothesis is a successful economic theory that explains that

markets evolve as a direct result of new information instantaneously, i.e it would not

be possible to determine the outcome of a market based on past values. The hypoth-

esis has resulted in a number of debates, with studies showing strong evidence both

for and against it [7]. Stochastic models have had the most successful in explain-

ing financial observations. Econometric models such as those developed in 1970s by

Box and Jenkins, known as ARIMA models have had huge success and have found

themselves established in every time series analysis text book ever since[8]. Another

very famous model is the Black-Scholes model [9], a differential equation that models

option price based on an underlying volatility and interestingly, to solve the equa-

tion under certain boundary condition, its required that it be converted into the heat

equation [10]. This isn’t the only instance where physics has been utilised in financial

modelling. Over the last 20 years, several different ideas from physics have been used

in modelling, such as phase transitions [11] and agent based simulations influenced

by the Ising magnetisation model, leading to varying levels of success in explaining

market dynamics[12][13][14].

All this is not to say that deterministic models have no place in financial economics,

non-linear models such as ARCH have been found to successfully predict short term

volatility in certain time series[15], of course where these models fall off is when

stochastic approximations are used to fill in gaps[16].

In the last few decades however, thanks for early pioneers such as Lorenz[17] and

Mandelbrot [18], Hsieh[19], Labaron[20], there has been a certain excitement for the
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development of non-linear deterministic models in hopes to be able to explain the

movement of stock markets using chaos theory. The concept of chaos is often hard to

gauge as there is no universally accepted definition however chaotic systems all have

the following in common:

Definition 1.3.4. Chaotic systems are systems with extreme sensitivity to initial

conditions, such that two dynamics with initial values y(t) and y(t) +∆y(t) will

diverge at a rate proportional to expλt where λ is known as the Lyapunov exponent.

Chaos theory looks to explain seemingly random phenomena, and in the recent

past there has been some success, albeit little, in modelling markets via chaos. Several

works such as works by David Hsieh [19] have successfully shown evidence for non-

linearity and some chaotic ’footprints’, however this is still fundamentally a new field

and more research needs to be done in order to develop a convincing argument for

chaotic markets.

1.3.1 Model Building and Complexity

We discussed that financial markets can be characterised as highly complex systems,

these systems can often be analysed in multiple layers. In its most microscopic model,

a financial market consists of agents (traders) that are able to interact with other

agents and move assets based on varying amounts of capital and interaction rules;

these interactions are highly non-linear and are determined by one goal, to maximise

profit for the agent. Other models take more of a macroscopic approach, looking at

changes caused by large events and their time-scale. Often the most intuitive mod-

elling option has been a statistical analysis of the copious amount of financial data

gathered over the last 100 years and interestingly, there remains a number of gener-

alisations that can be applied to all markets around the world no matter how diverse

their markets are. Examples of these generalisations are fat-tailed distributions of

squared price returns or scale invariance.

There’s strong evidence for complexity when we consider the following:

• Linear statistical properties of a single financial time series (a single stock,

commodity etc) show autocorrelation that decay quickly with time depending

on how often trades occur. Non-linear properties have a time scale that is

much larger, complexity is evident when there is both long and short range

movements. [2].
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• There is a high degree of correlation between different financial time series,

this co-movement is closer for time series belonging to the same sector. This

dynamical property between time series is a key aspect of complexity.

• The collective behaviour observation after particular market events whether

typical or extreme. Real life events are often the cause of spikes in prices or

short-term trends seen in the time series.

1.4 Project Aims and Thesis Layout

The project was set out in order to accomplish the following:

• Demonstrate and apply common time series analysis methods to a number of

financial markets in order to make inferences about market dynamics.

• Test markets for non-linearity and assess whether markets are chaotic.

• Build a mathematical model based on reasonable assumptions and inferences

from previous findings for a closed system of financial markets.

• Modify model to more closely align with real observations.

• Look at how forces outside of the market may effect the complex system, namely

the effect of news as a reaction to world events.

In chapter 2 of this thesis, statistical methods is discussed, we looked at the statis-

tics of financial time series by applying tools such as Fourier transforms, regression

analysis, autocorrelation and ARIMA modelling. In chapter 3 we present a set of

equations constructed that looks to model two co-moving time series and apply it

to index data of different sectors within the same market. In Chapter 4 we discuss

the implications of news on financial markets by employing text mining and language

model techniques to construct a time series of news, this is compared to financial time

series and ultimately put into the built model. Chapter 5 discusses our attempts to

find chaotic characteristics within the stock market and the output of our model.
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Chapter 2

Time Series Methods and Analysis

In this project we looked at many different time series from many different markets

in multiple countries; most of the financial data was gathered using data available

on Quandl1[21]. Throughout the project, we utilise programming languages Python

and R in order carry out analysis, Quandl has a built in API that works with both

languages.

2.1 Financial times series

Data from the stock market is recorded as opening price (price at market open time),

closing price, highest/lowest prices of the day and volume of trades. Below is the

time series for the shares of Apple (ticker: AAPL) dating from 1981 until 2017.

Immediately obvious is the sudden trend upwards in price that starts off around 2005,

this is evidence that markets are not completely random, and a particular event or

set of events triggered the motion. We can also create windows of time series such

as the bottom of Figure 2.1, inspecting time series closer shows that movement is a

result of both small and large fluctuations in price.

Other financial series have different overall trends, Figure 2.2 shows a number of

different stocks traded under NYSE, 2 of which (Bank of America, goldman Sachs) are

investment banks, as its visible, overall trends throughout time aren’t always similar,

even for companies that may operate closely. Equally there are similarities, take for

example the large dip in price at around 2007, as many know this is the result of the

worldwide financial crisis of 2007/08.

1Some data is freely available, others require a premium.
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Figure 2.1: Time series plot Apple (AAPL) closing price. Top: movement of price
since 1982. Bottom: time window between Jan 2016 to Aug 2017.

Figure 2.2: Examples of stock market time series traded under NYSE.
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2.2 Statistical Methods and Analysis

In statistical analysis, it is useful to regard an observed series, (x1, x2, x3, x4, · · · , xT )

as a particular realisation of a stochastic process. A realisation is denoted as {xt}T1
and the stochastic process is usually denoted as {Xt}∞−∞, we restrict the index on the

stochastic process to match the realisation (1,T). Stochastic process can be described

by a T dimensional probability distribution resulting in an analogy to population

and sample statistics. These processes can be characterised by T expected values

E(x1), E(x2), · · · , E(xT ) and T variances V (x1), V (x2), · · · , V (xT ) with the standard

definition of the expected value

E[X] =
∞∑
i=1

xipi (2.1)

with pi being the probability of the random variable. Variance is given by

V ar(X) = [E(xi − E(X))2] (2.2)

its important to note that using a single realisation to infer the properties of a stochas-

tic process is only valid if the process is ergodic. Testing for ergodicity is a difficult

task using a single time series, so we make the assumption that for any stationary

time series this requirement is met [22].

2.3 Stationarity

Stationarity is a very important in both linear and non-linear time series analysis.

Trends can be deterministic (linear or non-linear) or stochastic via stochastic shocks

that cause permanent movement in series position. In general we require stationarity

as we generally look to describe system as a set of recurrence or regression relation,

both of whom need to be independent of time in order to have constant parameters.

Stationarity is therefore a requirement in both mean and variance.

Definition 2.3.1. Strictly stationary processes are those where all characteristics of

the time series are independent of time, i.e. the joint probability distribution for one

set of times (t1, t2, · · · , tn) remains the same as the joint probability distribution at

times (t1+k, t2+k, · · · , tn+k). where k is an arbitrary shift in time.

Definition 2.3.2. Weakly stationary processes are defined as those with a mean,

variance and autocovariance that remain constant with time.
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Strictly stationary processes imply weak stationarity, though this is not always

the case the other way round. For Gaussian processes, weak stationary would also

imply strict stationarity as distributions are defined by the stationary moments. The

autocovariances are defined as

γk = Cov(xt, xt−k) = E[(xt − E(X))(xt−k − E(X))] (2.3)

and autocorrelations

ρk =
Cov(xt, xt−k)

[V (xt)V (xt−k)]
1
2

(2.4)

for a stationary process

ρk =
γk
γ0
. (2.5)

2.3.1 Types of Stationarity

There are a number of methods to test for stationarity and we will discuss some of

the ones that are utilised in the project here.

Definition 2.3.3. Trend stationarity is a process with a (linear or non-linear) deter-

ministic trend term in in the model. If we consider a model

Yt = θYt−1 + µ+ αt+ εt (2.6)

Where µ is a constant, εt are random variables and |θ| < 1, solving for Yt we find

that E[Yt] also contains a linear trend, i.e non-stationary. Any stochastic shocks to

the process would be temporary and so the process is mean reverting.

Definition 2.3.4. Unit root processes non-stationary processes where stochastic

trend is present and drifts are non mean reverting. A simple model for a unit root

process is

Yt = θYt−1 + µ+ εt (2.7)

A unit root is present if θ = 1. Unit root processes are very sensitive to initial

conditions (Y0) and processes with different starting positions would have completely

different trajectories.

2.3.2 Stationarity Tests

Stationarity in a deterministic trend is often very easy to identify and remove, if linear,

simple linear regression with with the time variable can be utilised and have trend
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subtracted. For non-linear trends usually a known model is fit or one is estimated

with an n order polynomial and subtracted in a similar way. Unit roots are more

difficult to identify and so there are a number of tests that can be used to identify

them.

2.3.2.1 Augmented Dicky-Fuller Test

The Dicky-Fuller[? ] tests the null hypothesis that in equation 2.7 θ = 1 and the

alternate hypothesis θ < 1. The Dicky-Fuller is the t-test

τ̂ =
θ̂ − 1

Standard Error(θ̂)
(2.8)

In most circumstances, a 5% critical value is is given by a statistic of -1.95. The

Augmented Dicky-Fuller test takes this further by modelling a time series as

yt = θ1yt−1 + θ2yt−2 + θ3yt− 3 + · · ·+ θnyt−n + εt (2.9)

Defining

π = θ1 + θ2 + θ3 + · · ·+ θn − 1 (2.10)

The hypotheses therefore are

H0 : π = 0 and HA : π < 0 (2.11)

and the t-test is

τ̂ =
π̂

Standard Error(π)
(2.12)

A known deterministic trend can be accounted for to test for unit roots by the addition

of a trend term in equation 2.10.

2.3.2.2 KPSS

KPSS (Kwiatkowski, Phillips, Schmidt and Shin) [23] test reverses the hypothesis test

and has stationarity as the null hypothesis. The null hypothesis assumes a stationary

process

Yt = µ̂+ εt (2.13)

i.e.

H0 : V ar(εt) = 0 and HA : V ar(εt) > 0 (2.14)

10



The test statistic is given by:

KPSS =
1

T 2

∑T
t=1 S

2
t

V ar(ε)2
(2.15)

where St =
∑t

s=1 εs. The two tests, KPSS and ADF can be used in conjuncture for

confirmatory analysis.

2.3.3 Finding Stationarity

There are four main methods of stationarising a time series; smoothing and decompo-

sition, trend subtraction and transformation. Non-stationary time series can be made

stationary by applying a smoothing function or a filter to the original time series,

and removing the smoothed time series from the original one. Moving averages are

one method of filtering, whereby an average of a subset of the series is calculated for

each point leading up to point of interest. This results in a smooth function with

a trend similar to the original time series. Seasonal decomposition is a related idea,

time series with expected seasonal peaks can have them decomposed by calculating

an average value at each particular season and subtracting those averages from the

time series. In Figure 2.6 we show both of these methods. For monthly data from

the S&P500 Financial Sector from the years 2002-2014, we find the average values

for every month and subtract the time series from the original data. Then we fit a

moving average time series of the decomposed series and subtract. The residuals are

in the form of a stationary time series. We can reach stationarity by fitting a partic-

ular trend to the time series, for example we fit a model in the form of Y = mt + c

to data from the S&P500 GICS Information Technology Index, in Figure 2.4 fit is

shown, removing the fit we are left with a time series that looks stationary, however

this is not the case after running an ADF test. We find df = −2.96, p(df ) = 0.286,

for 5% significance, we cannot reject the null hypothesis that there remains a unit

root in the residuals. In fact the main issue with using models to stationarise data is

the requirement of prior knowledge of the model itself and for stock market data lin-

ear models (or simple polynomials) are almost never fully satisfactory for detrending.

Non-linear transformations can often be used to help approximate a linear trend, for

example taking the natural logarithmic transform of S&P IT sector time series we

can apply a log transformation so that we are left with the time series

Yt = log(yt) (2.16)
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Figure 2.3: Seasonal and moving average decomposition of monthly S&P500 financial
sector data

Figure 2.4: Data from S&P500 IT sector. Top: Linear fit of time series with time as
the dependent variable. Bottom: Residuals after fit. subtraction

We can then apply the linear trend to our data, this method is known as Log-Linear

Detrending (LLD) and is a frequently used method in stock market analysis.We find
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df = −3.2,p(df ) = 0.146 The ADF tests from the residuals from LLD show that the

null hypothesis can’t be rejected, however the time series is now more stationary than

before. Figure 2.5 shows this. Box and Jenkins [8] introduced a method make a time

Figure 2.5: Data from S&P500 IT sector. Top: Log Linear fit of time series with time
as the dependent variable. Bottom: Residuals after fit. subtraction

series stationary, known as differencing. The first difference of a time series can be

shown as

∆xt = xt − xt−1 (2.17)

Introducing the backshift operator

Bxt ≡ xt−1 (2.18)

and, in general,

Bmxt = xtm (2.19)

we can define the difference operator

∆m = (1−Bm) (2.20)
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where m is the order of difference. We can show that this transformation leads to

a stationary series from Figure 2.6 in the S&P500 IT sector index, the ADF test of

the first differences show that the null hypothesis of a unit root is rejected. We find

df = −11.031,p(df ) = 0.01 Transformations such as logarithmic ones can be used in

Figure 2.6: Data from S&P500 IT sector. Top: Index data with no transformation
Bottom: First difference of index. subtraction

conjunction with differencing. In fact, in economics, geometric returns of a stock is

just the difference of the logged series, i.e.

rt = log(xt)− log(xt−1) (2.21)

the returns, r approximately equal to the percentage change in price through time,

and time series’ are often modelled using returns as the variable of interest.

2.4 Fourier Analysis

One of the main distinguishing features of time series analysis to ordinary regression

is the presence of repetitive or regular behaviour over time. The concept of regularity
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can be expressed in terms of periodic variations, such that the series is produced

by a combination of sins and cosines expressed as Fourier frequencies. Most may

be familiar with the concept of the Fourier series, where any truly periodic function

can be reorganised as a finite sum of sins and cosine functions. Generally, Fourier

transforms can be used to describe any function with an infinite sum over continuous

space. The Fourier transform is highlighted by the following equations

f(t) =

∫ ∞
−∞

F (v) exp (2iπvt)dv (2.22)

Where f(t) is a function or signal, v are the frequencies and F (v) are the fourier

coefficients given by

F (v) =

∫ ∞
−∞

f(t) exp (−2πivt)dt. (2.23)

In the fields of time series analysis we deal with discrete space and a finite series.

Given a trajectory, the discrete Fourier transform (DFT) can break the equally spaced

series into equivalent length cycles. Each cycle has an amplitude, a phase delay and

frequency. The equation for the DFT is

Xf =
N−1∑
t=0

xt exp (−i2πft/N) (2.24)

where Xf is the Fourier coefficient, translating to the amplitude of frequency f 2.

Each f is a complex number, including both an amplitude and phase shift. N is the

number of samples in the series xt. Fourier coefficients can be converted to the time

domain via the inverse Fourier transform (IFT)

xt =
1

N

N−1∑
f=1

Xf exp (i2πft/N). (2.25)

DFTs are the most important transforms in spectral analysis [24], however comput-

ing the functional form above for large series becomes exceedingly taxing on larger

series, thankfully we can utilise modern computational algorithms such as the Fast

Fourier Transform (FFT) in order to greatly increase calculation speeds3. The plot of

frequencies against their amplitude is known as the spectrum and sometimes as the

2Here we have used f for frequency, rather than v in equation 2.22
3The FFT has built-in libraries in Python and R, for details on the algorithm see [25]
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periodogram4. For example we can show the result of a sinusoidal of the form

xt =
3

4
sin(3(2π)t) +

1

4
sin(7(2π)t) +

1

2
sin(10(2π)t) (2.26)

where t is from 0 : 6s. Figure 2.7 shows this, on the left is the time domain plot

and the right is the spectrum, where each peak shows the amplitude of the particular

harmonic frequencies5.

Figure 2.7: Left: Cyclic trajectory in the time domain, Right: Spectra

Another example is a wave with a more complex cycle, in order resemble a fi-

nancial series we add a linear trend and Gaussian random variables at each t:(ε =

i.i.d. N(0, 1)) i.e

xt = 20t+ 3 sin(3(2π)t) + εt. (2.27)

In Figure 2.8’s spectrum, we see the largest amplitude at first harmonic frequency

(1Hz), this corresponds to the linear trend component of the wave, the second fre-

quency also has a high amplitude, which is not part of the sin function, in fact the

trend in the series has distorted the spectrum and the DFT hasn’t captured the signal.

The harmonic frequencies are shown in the bottom left, the presence of both noise

and trend has masked the true periodic frequency of 3Hz. We can also see that the

presence of random variables scatters the spectrum and leads to a broadband spectra.

This result can be seen when we find the Fourier transform of real stock data, Figure

2.9 shows the transform of the S&P500 IT sector data. Like the sinusoidal example,

the first frequency is by far the largest, corresponding to the time trend. This forms

4In signal processing, the periodogram is actually a scaled version of the DFT
5The Fourier coefficients have been normalised, so what you’re seeing is in fact Xf/N
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a problem if we want to identify periodicity in the market, as non-stationarity clearly

has a large effect on the Fourier transform; in fact we show this in the bottom right

of Figure 2.9 where the first 10 harmonics are summed to reconstruct the series, the

overall trend is approximately represented by the first number of frequencies. We note

that at the beginning and end points of the series, the reconstructed series greatly

diverges from the original, these ’warparound’ effects are a result of the requirement

for periodicity in the series; what we see is an attempt for the series to match its

endpoints for periodic repetition. .

Figure 2.8: Top left: Cyclic trajectory in the time domain. Top right: Frequency
Spectra. Bottom Left: First five harmonics. Bottom Right: Reconstructed time
series using all harmonics.

Stationarity is also useful for Fourier analysis. We employ the use of the differ-

encing to achieve stationarity in the IT index, and apply the Fourier transform. We
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Figure 2.9: Top left: S&P500 IT sector trajectory in the time domain. Top right:
Frequency Spectra. Bottom Left: First five harmonics. Bottom Right: Reconstructed
time series using first 10 harmonics.

can see the spectrum on Figure 2.10 we see that all frequencies over the maximum

resolvable frequency range of 596 day−1 are somewhat homogeneous in amplitude.

There are certain frequencies that are more pronounced than others, however its not

possible to identify them with any certainty. this is evidence for aperiodicity in the

time series. Due to the Nyquist frequency limit, reconstructing the time series leads

to some discrepancy, with a error much larger than the non-stationary reconstruction,

this is because every harmonic frequency now adds a much larger proportion to the

series; this problem may be resolved by using data sampled at every 12h intervals.
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Figure 2.10: Top left: S&P500 IT sector differenced trajectory in the time domain.
Top right: Frequency Spectra. Bottom Left: First five harmonics. Bottom Right:
Reconstructed time series using 596 harmonics.

2.5 Autocorrelation

Earlier we introduced the autocorrelation statistic in equation 2.28, autocorrelation

in time series is a useful measure of how well correlated a sample is with previous

subsets of the series. Knowing if a series is serially correlated would help us deter-

mine models for the time series, as we have more insight on how the system evolves.

Autocorrelation is based on Pearson’s correlation coefficient (R), which determines if

two sets of variables show linear dependence, for a sample, R is given by

ρx,y =
E[(X − µX ][Y − µY )]

σY σY
(2.28)
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Where µ is sample mean, and σ is the sample standard deviation. The autocorrelation

function (ACF) represents the sample autocorrelation with respect to order of lag k,

given by equation 2.28. The plot of ACF against lag is known as the correlogram.

Inspecting the correlogram can also tell us if there are repeating or periodic patterns

in the data. By definition, a white noise series ωt with E(ωt) = 0 and variance σ2
ω

will have autocorrelation

ρω(s, t) =
E[ωs, ωt]

σ2
ω

=

1, s = t

0, s 6= t
(2.29)

and we can see this to be true if we simulate the series, in Figure 2.11 this is shown,

the ACF is at 1 for 0th lag and drops to insignificant values thereafter. The ACF

distribution follows a normal one and has µ = −1/N and σ2 = 1/N where N is sample

length. The significance is of critical value of 95%, this is calculated from this, i.e

error bars of ±2σ = 2/
√

(N). ACF can be used to detect non-stationarity in time

series, as long term trend would show very steady but gradual decay with lag. This

is only the case when the series is non-stationary in µ, if a series is non-stationary in

variance alone, the ACF will not identify non-stationarity.

Figure 2.11: Left: White noise time series (NID ∼ (0, 1), Right: Autocorrelation
Function

A similar measure is the partial autocorrelation function. In general, the correla-

tion between two variables can be due to the variables being correlated with a third.

For example the correlation between xt and xt−3 may be due to the correlation this

pair has with the intervening lags xt−1 and xt−2, the PACF adjusts for this.

20



The kth partial autocorrelation is the coefficient φkk in the serial process

x̂t = φk1x̂t−1 + φk2x̂t−2 + · · ·+ φkkx̂t−k + ωt (2.30)

Where x̂ is the mean subtracted series. We can find φkk via multiple regression, or

alternatively through the relationship
ρ(0) ρ(1) · · · ρ(k − 1)

ρ(1) ρ(0) · · · ρ(k − 2)
...

...
...

...

ρ(0) ρ(1) · · · ρ(0)




φk1

φk2
...

φkk

 =


ρ(1)

ρ(1)
...

ρ(k)

 (2.31)

The white noise series’ PACF is plotting in Figure 2.12, as expected, this follows the

same form as the ACF for a white noise series with no significant correlations.

Figure 2.12: PACF of white noise series.

We applied the ACF and PACF to some financial time series to make inferences

on their dynamics. Figures 2.16 and 2.13 show the ACF and PACF for the differenced

S&P500 IT index, respectively. The left side of the ACF plot shows correlation for

the first 60 ks, correlation looks very small, suggesting that the series is progresses

21



independently from previous values. Extending the plot to 800 k we see that this

may not be the case, the right hand plot reveals that

• Significant correlations exist on a scale larger than 60 days, for example at lags

of k ≈ 80 we see significant correlation.

• The ACF gradually decreases over long lags, k.

Figure 2.13: Left: partial autocorrelation with max lag k = 80. Right: autocorrela-
tion with max lag k = 900

Figure 2.14: Left: partial autocorrelation with max lag k = 80. Right: autocorrela-
tion with max lag k = 900

22



What we can infer is there is both a seasonal component in the system that arises

every four months and that there may be some long term memory in the system. Short

term correlation is still not evident from the ACF. From the PACF plots we can see

that there exists significant correlation at lag k = 20, this corresponds to a months

difference. This result makes sense, a month’s end is often a time when companies/

news sources release progress reports, information would persuade potential investors

to buy or sell, leading to significant correlation months apart (and little in between).

As stated earlier, evidence for complexity comes from the short term memory of stocks

when we analyse the {x2t} series. In Figure 2.15 this is shown, the autocorrelation for

the squared differences show a decay of significant correlations over time, suggesting

that the system is in fact auto correlated non-linearly. It was stated that for memory

Figure 2.15: Left: plot of difference squared IT index. Right: autocorrelation, show-
ing slow decay of correlation.

in the system decays at a rate proportional to how often a the instrument is traded,

we can demonstrate this by inspecting correlation of the prices of three commodities

that have different trade volumes. In Figure 2.16 we calculated the ACF and PACF

of the commodities copper, cotton and gold. Gold is a heavily traded commodity and

traded a number of magnitudes higher than both copper and cotton [26][27]. What

is clearly evident that there is significant autocorrelation in the k = 1 of both cotton

and copper but this is not the case for gold. We can infer that the volume of trades

has a direct effect on the rate of short term correlation. its likely that there exists

autocorrelation in gold however on a scale smaller than k = 1 to find this we would

need to study intraday market data. We can see that some time series are correlated
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Figure 2.16: Time series of commodities copper, cotton and gold, with the respective
ACF and PACF

with their own past values at specific lags, using this knowledge it is possible to build

mathematical models to express the evolution of a system, in fact Box and Jenkins

[8] showed that the power of ACF and PACF can be used to explain a stochastic

process using ARIMA modelling.

2.6 Linear Stochastic Models

There are a set of stochastic difference equations, that aim to model any weakly

stationary process as a linear combination of a sequence of random variables. These

are known as ARIMA models and we introduce them in this section.

Definition 2.6.1. An autoregressive model is a generalised stochastic difference equa-

tion of the form

xt = α + φ1xt−1 + φ2xt−2 + ·+ φpxt−p + εt (2.32)

where α is the mean subtracting term of the form α = µ(1−φ1− ...−φp), for a series
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with 0 mean this disappears. By convention, the model is abbreviated as AR(p). εt

is a series of independent Gaussian random variables denoted by εt ∼ NID(0, σ2
ε ).

The AR(1) model can be generalised by considering

xt = φt−1 + εt

= φ(φxt−2 + εt−1) + εt

= φkxt−k +
k−1∑
j=0

φjεt−j

(2.33)

We used Monte-Carlo methods to simulate AR(1) and AR(2) and calculate their

ACF and PACF in order to make inferences about their structure; Figure 2.17 shows

this. What we see is that for the AR(1) series with φ = 0.9, observations close to

Figure 2.17: Top: simulated AR(1) with φ1 = 0.9 with ACF AND PACF adjacent.
Middle: simulated AR(1) with φ1 = −0.9 with ACF AND PACF adjacent. Bottom:
simulated AR(2) with φ1 = 0.9 and φ2 = −0.9 with ACF AND PACF adjacent. σ2

ε

= 1

each other will be positively correlated, stationarity requires |φ| < in all models, and

so what we see is that the decimal coefficient acts as a force driving the series closer

to the mean µ = 0. The ACF of shows a smooth decay to zero, whereas the PACF

(= φ1 = 0.9) cuts off to zero at lags after k. In this way, the AR(1) the series is a

Markovian process i.e

P (xt|xt−1, xt−2, · · ·x0) = P (xt|xt−1) (2.34)
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The AR(1) process with φ1 = −0.9 shows that nearby observations are negatively

correlated with each other and so we observe a fluctuating pattern. From the ACF

we see an oscillating decay towards zero and the observed cutoff i.e. PACF = φk. The

AR(2) process with φ1 = 0.9, φ2 = −0.9 shows that the process (now non-Markovian)

has a damped oscillating pattern, and the PACF cuts off at lag p with correlations

φp = φp.

Definition 2.6.2. Moving average models are alternatives to the autoregressive rep-

resentation, which xt are no longer the linear combination, but rather the white noise

series εt are linearaly combined, i.e

xt = εt + θ1 + εt−1 + θ2ε2 + · · ·+ θqεq (2.35)

with q lags in the moving average and so by convention the model is described as

MA(q). We created Monte-Carlo simulations of two MA(1) processes in Figure 2.18,

comparing with the AR(1) processes in Figure 2.17, the realisations from the MA(1)

are often quite similar, suggesting that it may, on occasions, be difficult to distinguish

between the two. Furthermore, we see the opposite pattern with regard to the ACF

and PACF, in the MA(1) model, it is the PACF that decays smoothly, whereas the

ACF cuts off.

Figure 2.18: Top: simulated MA(1) with θ1 = 0.9 with ACF AND PACF adjacent.
Bottom: simulated MA(1) with θ1 = −0.9 with ACF AND PACF adjacent. σ2

ε = 1

Definition 2.6.3. A stationary time series can be generalised as an ARMA(p,q)

26



or autoregressive moving average process and follows

xt = α + φ1xt−1 + · · ·+ φpxt−p + εt + θ1 + εt−1 + · · ·+ θqεq (2.36)

with θq 6= 0, φp 6= 0 and σ2
ε > 0. Once again, we simulated the model, as shown

in Figure 2.19, the patterns in the series are now an obvious combination of both

models. With regards to financial data, we have already seen that time series are

Figure 2.19: Top: simulated ARMA(1, 1) with θ1 = 0.9, φ1 = 0.9 with ACF AND
PACF shown below. σ2

ε = 1

often non-stationary and so in order to fit a model, any unit roots or trends must

be removed. a non-stationary series that is made stationary through the difference

operator is known as an integrated series or I(d) where d is the number of differ-

ences required to stationarise the series, and so a further generalisation can be made

to ARMA(p, q)in that a non-stationary process can be described as an autoregres-

sive integrated moving average process or ARIMA(p, d, q) where d is the order of

difference in the series.

There is a final model that we must consider, and that is the discrete random walk

model of a time series

xt = xt−1 + εt (2.37)

which is essentially an ARIMA(0,1,0) model or an AR(1) with φ1 = 1, a random

walk is strictly non-stationary.

ARIMA processes are useful in both fitting models to dynamic systems and cre-

ating forecasts, but as we’ll see in chapter 3, they can help explain non-independent

errors after fitting a particular model.
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2.6.1 Parameter Estimation

For very low order ARIMA models, its generally enough to study the ACF and

PACF of the data to estimate the exact order and parameters and magnitude of the

coefficients; however its immediately obvious that when multiple orders of positive

and negative coefficients are expected, it would be too difficult to fit a model with

certainty. A routine method of model fitting is to fit a number of models and use

parameter estimation techniques such as maximum likelihood estimation (MLE) to

compare them and decide which fit is correct.

The likelihood function of a set of parameters for a time series {xt} is defined as

L(θ) = P ({xt}|θ) = P (x0|θ)P (x1|θ)...P (xn|θ)

=
n∏
t

P (xt|θ)
(2.38)

If we consider ARMA(pq) with εt ∼ NID(0, σ2
epsilon) and a parameter vector

β= (µ, φp, θp) the likelihood function can be written as

L(βββ, σ2
ε ) =

n∏
t=1

P (xt|xt−1, ..., x1) (2.39)

The conditional distribution P is a Gaussian with mean xt−1t and variance vt−1t =

σ2
ε r
t−1
t where r is a function of the model parameters. Without explicit derivation the

likelihood can be written as

L(βββ, σ2
ε ) = (2πσ2

ε )
−n/2[r10(βββ)r12(βββ)...rn − 1n(βββ)]−1/2 exp

(
− S(βββ

2σ2
ε )

)
(2.40)

where S(βββ) is the conditional sum of squares

S(βββ) =
n∑
t=1

{
(xt − xt−1t (βββ))2

rt−1t (βββ)

}
. (2.41)

If we take the partial derivative of the natural log of equation 2.40 with respect to

βββ, σε and setting the result to zero we can find the parameters that fit the model. This

is done numerically, and with the use of certain algorithms like the Kalman filter[28].

The main problem with using MLE to fit models is that we’re comparing models with

different numbers of parameters, this can be solved by using criteria measures such
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Table 2.1: Model parameters estimation for copper commodity

(p, d, q)(p, d, q)(p, d, q) φ1 θ1 θ2 Log(L) AIC BIC
(0,1,0) 0 0 0 29500 -58997 -58989
(1,1,0) -0.190±0.01 0 0 29728 -59453 -59437
(0,1,1) 0 0 -0.196 ±0.01 29742 -59480 59464
(1,1,1) 0.070±0.05 -0.26 ±0.04 0 29743 -59480 -59457
(2,1,1) -0.10 ±0.16 -0.04±0.035 -0.09±0.16 29744 -59481 -59449
(2,1,0) -0.19±0.009 -0.06±0.01 0 29744 -59482 -59459

as the Akaike information criterion.

AIC = 2k − 2 ln((̂L)) (2.42)

or the Baysian information criterion

BIC = ln(n)k = 2 ln(L̂) (2.43)

where k is the number of parameters, n is the number of data points in x and L̂ is

the MLE of the model. Given a set of models, the most likely fit is the one that has

the maximum AIC or BIC. Both are criteria for goodness of fit, but also penalise for

overfitting (i.e a higher order estimate of parameters), the BIC penalises overfitting

more than the AIC.

As a preliminary, we used this method to fit a model on the copper commodity

price we previously demonstrated, we fit a number of potential models and show the

results in Table 2.1. The best fit model chosen from our MLE based criteria was an

ARIMA(0, 1, 1) with θ1 = −0.105 ± 0.001, σ2
ε = 0.00053 and µ = 0.04. We then

compared the result with the original series by looking at the ACF, PACF and the

Fourier transform, as shown in Figure 2.20. We can see that the model results agrees

fairly well especially when we look at the ACF and PACF, however with the FT,

we see that there is a strong tailing to the higher frequencies of the series. its not

fully understood as to why this occurred, the MA model wouldn’t suggest stronger

periodicity at high frequencies compared to lower ones.

To get a better picture of our result, we created 5 more simulations, this time taking

intial conditions xt at the 1st August 2016, and simulated the data until 1st February

2017 in order to see how accurate a forecast using this model would be, the results

are shown in Figure 2.21. We can see that there is a tendency for the simulations to
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Figure 2.20: Top: ACF, PACF and DFT of simulated ARIMAMA(0, 1, 1) fit of
copper price. Bottom: Original ACF, PACF and DFT of copper.

Figure 2.21: Price of copper Commodity from 1st January 2016 until 1st Febuary
2017, coloured lines show simulated trajectories beginning 1st August 2016.

follow the original trajectory, however there is also a large error with prediction. We

can see this error more clearly if we create many more simulations and and use the

ensemble to create an average trajectory, this is seen in Figure 2.22. The shaded area

represents the 80% and 95% confidence intervals (assuming normality). What we see

is that forecast accuracy greatly deteriorates with increasing time. This is a general

weakness of stochastic time series models; these models may serve to explain more

simple systems more accurately, but in order to describe more complex systems, such

as a stock markets, we may need to branch out.
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Figure 2.22: Price of copper Commodity from 1st January 2016 until 1st August
2016 with the addition of the forecast line. The shaded areas represent 80% and 95%
confidence intervals.

When we applied the ARIMA model to a more complex market, the S&P500 IT

sector, we found that the only plausible fit was an ARIMA(0, 1, 0) with µ = 0. This

is not an unexpected result, in fact we showed earlier that the IT index showed very

little autocorrelation in its daily price and so the closest linear model would be the

random walk. With many stocks, this turns out to be the case, yet it is still useful

to make inferences using these models, in order to make inferences that aid with our

own model.

2.7 Multivariate Time Series Analysis

So far we have only discussed univariate models and analysis of time series. Multi-

variate analysis extends much of the same concepts we have seen and applies them to

multiple time series. In this section we look to see the extent of correlation between

markets, whether they belong to the same groups or not.

We began our analysis by applying ordinary least squares method of regression

to three stocks that are present in the S&P500 IT sector, these are the companies

(and their tickers) Google inc. (GOOGL), Apple inc. (AAPL) and IBM inc. (IBM)

starting from 1st January 2000 until present day.

Before we can apply analysis techniques, we need to determine stationarity in the

time series; we applied the stationarity tests described in the previous section. We
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found that a difference of order one was suitable to achieve stationarity as ADF null

hypothesis was rejected every time whilst the KPSS null was not, The results of the

tests are shown in Table 2.2, and in Figure 2.24 we plot the resulting time series after

differencing.

Table 2.2: Stationarity Test Results

IBM ∆IBM AAPL ∆AAPL GOOGL ∆GOOGL

KPSS ∼5 15.185 0.11312 20.195 0.1401 18.63 0.26493
p(K) 0.011 0.19 0.010 0.11 0.011 0.18

ADF, ∼5 -1.6691 -13.496 -2.2431 -12.784 -1.7026 -14.341
p(A) 0.732 0.01 0.4754 0.009 0.7042 0.087

Figure 2.23: Three stocks series AAPL,GOOGL and IBM and their differenced trans-
formation

The first, and most obvious analysis, is to fit a linear regression model, of the form

x(1,t) = α +mx(2,t) + εt (2.44)

where x(1,t) and x(2,t) are two separate series and εt are independent and normally

distributed errors or the residuals of the fit. A linear regression model is often suf-

ficient if the errors show no autocorrelation, the presence of correlated errors would

suggest that the fit may be non-linear in nature. Using ordinary least squares method

(Minimising S from Equation 2.41), we plotted fits of the three stocks together, the

results and the errors of the fit are shown in Table 5.1. The ρ is the (Pearson’s)
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correlation coefficient

ρ =
Cov(x1,t, x2,t)

[V (x1, t)V (x2,t)]
1
2

. (2.45)

The ρ can be used as a statistic in order to test the significance of correlation with

the hypothesis

H0 : True Correlation = 0;HA : True Correlation 6= 0.

p values can be deduced by solving the Pearson’s distribution integral numerically or

by looking up values in available Tables [29]. We can see that for every fit, the null

hypothesis is rejected with over 99% confidence.

Table 2.3: Regression Results

m± δm α± δα ρ p(ρ)

AAPL vs IBM 0.22046 ± 0.01169 0.04416± 0.02016 0.3472757 2.2e-16
AAPL vs GOOGL 0.06221± 0.00289 0.03547 ± 0.01982 0.3892971 2.2e-16
IBM vs GOOGL 0.095585 ± 0.004573 0.007615 ± 0.031351 0.3462729 2.2e-16

We plotted the fits along with the ACF of the residuals in Figure 2.24. What

we observed is that the see that there appears to be some, albiet small, forms of

autocorrelation in the fit residuals of all three models. This can be interpreted as

either a goodness of fit measure, where there is still room to improve our regression

fits or that there is some non-linear component in the correlation between the stocks.

These observations take into account the ensemble as a whole, we can understand

the correlations more clearly by plotting correlations based on a rolling window of the

series. We applied rolling windows of 1 month (20 data points) to each observation,

and calculated both the correlation coefficient and the regression slope m. The results

are shown in Figures 2.25 and 2.26.

Clearly, neither regression or the correlation coefficient are uniform over time.

Correlation and regression both change with one another over time; this means that

when two stocks become highly correlated i.e. co-moving, they also exert movements

to one another to a higher degree, this leads us to believe there may be a force, outside

the system that causes this effect. Even more interesting is the comparison between

the measures, for instance during February of 2012 both ρ and m of all three stocks

switched signs into negative regions, this occurrence is seen throughout the series,

we can infer that the change in correlation between two related stocks X, Y stocks
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Figure 2.24: Linear Regression plots (with errors shaded around trendline) with ACF
of residuals adjecent. Top: AAPL vs IBM. Middle: AAPL vs GOOGL. Bottom: IBM
vs GOOGL

is also related to the change in correlation between one of the stocks and a third

stock, seemingly related stock Z. This suggests that these related stocks belong to

the same dynamic system. It is not immediately clear as to what causes the signs

of both parameters to switch at certain periods, but we can infer that this could

be more evidence for a complex, non-linear system. We have not yet considered if

two series are correlated over time periods; in fact its more useful when building a

dynamic model, to see what the effect of two series are over time. One method is to

study the CCF or cross correlation function; CCF is essence just an extension of the

ACF but correlated with a different series, and negative lag values are allowed in the
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Figure 2.25: Rolling Correlation ρ of AAPL, IBM and GOOGL via a one month
window.

Figure 2.26: Rolling Regression of AAPL, IBM and GOOGL via a one month window.

correlogram. The CCF is defined

ρXY (τ) =
E[(Xt − µX)(Yt+τ − µY )]

σXσY
(2.46)
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. where X and Y are two jointly stationary processes and τ is the number of lag

shifts in Y . If the correlogram shows significant correlation with positive τ , we can

see that there is in essence a τ ’time delay’ in how X effects Y ; for negative τ the

time delay is on X. If correlation in one region is higher than another, it can be

inferred that one variable leads the other. If positive τ has more correlation than

negative τ , X is said to be leading the lagging Y . If the both negative and positive

τ are similarly distributed, causation cannot be inferred and so a different variable

must be analysed. Insignificant correlation would suggest that two variables change

instantaneously to each other (or within one day). In Figure 2.29 we plot the CCF

for three stocks. One the left are CCFs from a one year window of 2016. On the

right is the entire series from 2007-2017, with max τ = 1500. What is clear is

that the highest correlation is at τ = 0 for each stock, this tells us that most of

the ’information’ travels between stocks within at least one day, however significant

correlation (and anti-correlation) is visible for small |τ | around 0, suggesting that a

small fraction of how stocks effect each other is delayed in time. For small data sets

and time windows (Figure 2.29 left) these delayed correlations are hardly significant

however when studying long term movements between stocks over a long lag window,

we notice these lagged correlations of small τ hold significance; we also observe that

there is a steady decay over τ . From this we can infer that market information can

take time to fully develop. In the microscopic picture this is attributed to the agent

interactions when trading, when one stock return suddenly increases an agent may

take this to be a good omen and invest into the market and similar stocks, driving

those prices higher, leading to the instantaneous correlation; other agents may take

their time to gather more information (sacrificing higher potential rewards) before

making the decision to invest into the market. Furthermore, we see that in the case

of AAPL vs IBM and IBM vs GOOGL there is a visible asymmetry in the CCF, in

both cases the stock IBM is being lead by two series, allowing us to conclude that

the change in stock price from AAPL and GOOGL causes the price to also change

in IBM. For the case of AAPL vs GOOGL, the CCF is approximately symmetric, no

causation relationship can therefore be inferred. Next, we plotted the rolling CCF

based on a rolling window of one year and one month with a maximum τ of ±1, the

results are shown in Figure 2.28.Lagged correlations are not fully uniform over time

but are similar. Interestingly, there are times when the τ = 0 correlations are small,

the τ ± 1 correlations become larger, this is seen predominantly at the start 2014 in

AAPL vs IBM and AAPL vs GOOGL. This suggests that there are periods of time

where information travels slower between two stocks; looking at the 20 day window
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we see that these in fact these periods appear frequently. We next looked at the

Figure 2.27: Cross correlation functions of AAPL, IBM and GOOGL.

CCF between less related markets, we wished to look at how stocks from two different

sectors correlate over time and so we used the S&P500 IT and Industrial sector indices

as the time series to analyse. Figure 2.28 shows this, one the left of the Figure is the

CCF from 2016-2017 with a max τ = 100. We see a highly positive instantaneous

correlation between the two stocks, furthermore we see an asymmetry in the CCF

favoring the IT index being the leading series (There is also a very significant anti

correlation at τ = −4, ρXY = 0.24 ). This asymmetry is seen in the right of Figure

2.28, however to a slightly smaller degree. No causation relation can therefore be

inferred. The CCF is strictly a measure of linear correlation, we need to utilise other

tools to assess whether a non-linear correlation exists between series. Several methods

exist, such as Spearman’s Rank [30], copula[31] or mutual information. We utilise

the latter, mutual information in a similar fashion as the CCF. Given two series Xt

and Yt, the mutual information I is a measure of the redundancy of information

contained between the two series, similar to the CCF, we can vary one series as Yt+τ

and measure the redundancy of information as a function of τ and so the average
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mutual information is given by

I(τ) =
T∑
t=1

P (Xt, Yt+τ )log2

P (Xt, Yt+τ )

P (Xt)P (Yt+τ )
(2.47)

Where P(Xt, Yt) is the joint probability of X and Y and I(τ) ≥ 1. The differ-

ence between the CCF and MI method are that with MI, we are assessing what

non-independence does to the joint probability of two series. MI is not concerned

whether the series are correlated linearly, but it cannot tell us if two datasets are

anti-correlated. To calculate the MI, an estimate for both probability distributions

and joint distributions needs to be determined. In Figure ?? the probability density

histogram for both series are shown.We fit a Gaussian function to the histogram;. We

find that the Gaussian fit does not correspond to the normal distribution, i.e for a

Gaussian Function

f(x) = a exp

(
− (x− b)2

2c2

)
(2.48)

The relationship 1√
2πc2

= a is not satisfied, i.e Gaussian is non-normal. This is

shown in the Figure with an additional Normal fit using the parameters µ and σ.

The fitting parameters are shown in Table 2.3. We can show the difference between

the distributions more explicitly by plotting the quantiles of a theoretical normal

distribution against the same data in a Q-Q plot. in Figure 2.31 we show the resulting

plot; it is visible that around there distribution tails, a significant deviation from the

linear normal line is present in both distributions. This result agrees with previous

analysis in industry [32].

To calculate the joint probability distribution, we approximate with a 2D his-

togram at each τ , the joint distribution for τ = 0 is plotted in Figure 2.34.

Table 2.4: Gaussian Fit

µ± δµ σ ± δσ b+ δb c+ δc a+ δa

IT index 0.39 ± 0.18 6.13 ± 0.10 0.56 ± 0.01 4.31 ± 0.01 0.042 ± 0.001
IND index 0.22 ± 0.10 3.87 ± 0.08 0.32 ± 0.01 3.02 ± 0.01 0.062 ± 0.001

Figure 2.32 demonstrates the MI correlogram, we see the characteristic peak at

τ = 0 demonstrating that the highest correlation between the two indicies are indeed

instantaneous, the pattern surrounding the peak now differs only a small degree. Its

not possible to infer whether this is evidence for a non-linear relationship to any

certainty.
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Figure 2.28: Rolling Cross correlations of AAPL, IBM and GOOGL with both yearly
and monthly windows shown; yearly windows correspond to roughly 260 trading days
while monthly are 20 trading days.
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Figure 2.29: Cross correlation functions of S&P500 IT vs IND index.
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Figure 2.30: Estimated Probability den-
sity functions for S&P500 IT index (left)
and IND index (right)

Figure 2.31: Q-Q plots of IT(left) and
IND(right). Straight line is the perfect
normal distribution

Figure 2.32: Mutual Information Correl-
logram of IT vs IND.

Figure 2.33: CCF Correllogram of IT vs
IND.

Figure 2.34: Estimated Joint Probability density
functions for S&P500 IT index and IND index.
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Chapter 3

Non-linearity and Chaos

In the analysis of the S&P500 IT sector index, we observed that the lack of linear

autocorrelation lead to the the classification of a random walk (integrated white noise)

series in the ARIMA landscape, closely agreeing with the efficient market hypothesis.

Many view this theory as brushing aside questions that are deemed too difficult to

answer and look to use non-linearity and chaos to explain the seemingly random.

A requirement of chaotic dynamics is non-linearity, linear models can only gen-

erate dynamics of a combination of [oscillatory,non-oscillatory] × [stable, explosive].

Non linear can generate much richer types of trajectories such as sudden bursts of

volatility or crashes. Another requirement is that the system is very sensitive to initial

conditions.

Non-linearity is not exclusive to deterministic chaos, however, stochastic systems

can also be non-linear. The distinction is defined

xt = f(xt, xt−1...) + εt Stochastic non-linear (3.1)

xt = f(xt, xt−1...) Deterministic non-linear (3.2)

where f is a non-linear function of x and its past values. We can give a brief intuition

to chaos here from the simplest model, the Tent map. The tent map is a combination

of piece-wise linear functions that make a non-linear system, in the form of

xt =

µxt−1, , x < 0.5

µ(1− xt−1), x ≥ 0.5
(3.3)

The tent map is chaotic is exactly in the phase µ = 2. The tent map takes the
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interval of (0,1), stretches it to twice its length, and folds it in half, this stretch-

ing folding is repeated, pulling apart points that are close together and leading

to a system that is unintuitive to predict, but not in anyway random. We can

demonstrate the sensitivity of initial conditions by providing some simulations, in

Figure 3.1 we plotted four simulations, the first three have initial conditions that

are different by only a small percentage and the final differs much more, x0 =

[0.91587624823323, 0.917525262363, 0.913000000000, 0.01114423323]. As t → ∞, xt

fills the unit interval [0,1] uniformly, i.e the proportion of xt falling into an interval

[a,b] is (b-a) for any 0 < a < b < 1.The smallest difference in initial condition, as

observed, will diverge trajectories exponentially fast. The plotted ACF shows no sig-

nificant serial correlations, this is in fact a characteristic of chaotic non-linearity. A

Figure 3.1: Simulated tent map with intial conditions shown, the autocorrelation is
plotted below.

systems can be redefined in terms of its phase space (or state space), the equilibrium

state to which a system evolves is called the attractor. For a damped system, such as

a real pendulum the attractor tends to a point. Pendulums with replenished energies

have periodic attractors. With a chaotic attractor, equilibrium applies to a region,

rather than a point or orbit. Indeed chaotic equilibrium is a very dynamic set of

states. If a trajectory starts with intial conditions in the attractor’s basin, it will

eventually fall within its periodic phase space. Chaotic attractors often display spe-

cial symmetries with self-similarties on multiple scales called fractals. For a number

of simulations we plotted the attractor for the tent map (3.2) , and one can see where

the name originates.
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Figure 3.2: Tent map attractor, with xtvsxt−1, the lines show movement between
points on the lines of the ”tent” (no points are inside). The outliers are a result of
computational shortcomings with regard to high decimal places.

3.1 Tests for non-linearity

3.1.1 The BDS test

The BDS test, named after its developers Brock, Dechert and Scheinkman is the most

popular test for non-linearity, first published by the group in 1996 [33]. Originally

developed to distinguish data that is independent and identical distributed from non-

linear chaos; however since then it has deemed suitable as a test for non-linearity in

general [34]. It can be used as goodness of fit measure for fit residuals (even when

autocorrelations are insignificant). Indeed the strength of the BDS test is that it is a

statistical test, with a null hypothesis that data is IID (white noise). For a financial

time series that has either been fitted with a linear model so that autocorrelations are

0, or one that was found to be white noise from a linear prospective - non-linearity

can be determined after rejecting the null hypothesis.

The BDS test is based on the correlation integral. This is a measure of the

average ’closeness’ of two states within the attractor. For a time series xt
T
0 with

a defined embedding dimension (A phase space vector) or its m−history (xmt )(xmt )(xmt ) =

(xt, xt−1, .., xt+(−m+1)), the correlation integral as a function of m is defined as

Cm,ε =
2

Tm(Tm − 1)

∑
m≤s

∑
<t≤T

I(xmtx
m
tx
m
t ,x

m
sx
m
sx
m
s ; ε) (3.4)
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where Tm = T − m + 1 and I(xtm, x
m
s ; ε) is equal to one if |xt−i − xs−i| < ε for

i = 0, 1, ...,m− 1 and zero otherwise. We are estimating the probability that any two

m dimensional points are in a distance of ε. i.e

p(|xt − xs < ε, |xt−1 − xs−1 < ε, ..., |xt−m+1 < xs−m+1| < ε) (3.5)

if xt are white noise (iid), this probability should be equal to

Cm
1,ε = P (|xt − xs| < ε)m (3.6)

The BDS statistic for a time series is defined as

Vm,ε =
√

(T )
Cm,ε − Cm

1,ε

σm,ε
(3.7)

where σ is the standard deviation of the numerator. The BDS statistic is distributed

normally: N(0, 1) and so the null hypothesis is rejected at 5% whenever |V | > 1.96.

The embedding dimension is an intrinsic part of the system, in the tent map attractor,

m = 2 as we could describe the entire system with two dimensions. We perform the

BDS test on the S&P500 IT and IND index, a simulated white noise series and the

data from the tend map as a comparison, all 4 series showed know linear autocorre-

lation. In table 3.1 the results are shown for the BDS test for a number of m, we find

that the null of iid is rejected for both the IT and IND index, suggesting very high

likelihood of non-linearity in the system. The null is rejected for the tent map data

and non rejected for white noise. ε is chosen as a fraction of the standard deviation of

the sample series. We chose a time difference (t− s = 1) as there was no significant

autocorrelation in any series.
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3.1.2 Correlation Dimension

The correlation dimension, a related concept, is a method developed by Grassberger

and Procaccia (1986) [35] in order to detect chaos within a series. In the paper, they

showed that

C(ε) = Constant× εd (3.8)

where d is called the correlation dimension and it is a measure of the fractal dimension

of the system. For a particular m, the correlation dimension can be obtained via

dm = lim
ε→∞

log(Cm(ε))

log(ε)
(3.9)

This can be found by studying the slope of equation 3.8. We find that if d does

not increase with m, the data is consistent with chaotic behaviour. the Grassberger-

Procaccia dimension is more accurately defined as

d = lim
n→∞

dn (3.10)

Intuitively, if we consider the tent map; since the series is uniformly distributed over

interval [0,1], C1(ε doubles if ε does too. And so for small ε

d1 =
log(C1(ε))

log ε
= 1 (3.11)

When the embedding dimension is increased to 2, phase vectors now fill up a triangle

in phase space (as opposed to a square) and so

d2 =
log(C2(ε))

log ε
= 1

and the pattern continues as

dn =
log(Cn(ε))

log ε
= 1

and so d = 1 for the tent map. In the case of a white noise series, we find that the

m = 2 will fill a [0,1]×[0,1] unit square with the given distribution, this increases.

this leads to the conclusion that d =∞ for a random process. d essentially represents

how much phase space is ”filled up” by a series, and so they need not be integers.

The importance of d is that the minimum number of variables required to model

an attractor, is the smallest integer greater than d We calculated the correlation

dimension for the IT, IND, tent map and the Gaussian white noise for m up to 10.

47



The results are plotted in Figures 4.4 and tabulated in table 3.2. The results from

the white noise series showed the expected proportionality i.e d = ∞. The same

result is found for the tent map, where the correlation dimension is estimated to be

1.024 ± 0.1; which agrees with the theoretical value. The tent map data does become

distorted after m = 4. This is because embedding reduces the number of data points

to analyse by a factor 1/m. Our results showed that for up to m = 10, the correlation

dimension did not converge and chaos could not be detected in the system using this

method. From the graphs we can make the distinction that the increase in d is not

linear with m, meaning that we are likely to find that chaos exists in the system but

at a very high dimension. The implications of our result that the two systems are

non-linear and non-chaotic at low dimensions are as follows

• A system can have non-linear components without necessarily being chaotic,

these systems can be stochastic or deterministic (without exponential sensitivity

to initial conditions).

• Chaos could potentially be detected at much higher dimension, however this

result would be less useful as with very high dimensions, the usefulness of chaos

diminishes greatly, and no great distinction is made with randomness.

There is still a likely hood that chaos exists in this system and has gone undetected,

In the discussion section, explain some of the pitfalls with the correlation dimension

method and potential for future work.

Table 3.2: Results from the correlation dimension, ”NaN” values represent insufficient
data for embedding

m dIT dIND dω $dtent
1 1.175 1.113 0.998 0.911
2 1.945 2.126 1.993 1.200
3 3.371 3.207 2.977 0.984
4 3.353 3.282 3.858 1.001
5 4.598 4.390 4.784 2.998
6 5.583 5.1318 5.601 3.278
7 6.619 6.498 0.396 NaN
8 7.290 7.226 7.188 NaN
9 8.559 6.624 8.318 NaN
10 8.702 7.43 1.252 NaN
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Figure 3.3: Correlation Dimension of
IND index

Figure 3.4: Correlation Dimension of IT
Index

Figure 3.5: Correlation Dimension of
white noise series.

Figure 3.6: Correlation Dimension of
tent map series.
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Chapter 4

Building a Dynamic Model

The previous chapter built the foundations to make assumptions for a mathematical

model, these foundations were particular inferences from stock market time series

analysis. We found that wide-sense stationary stock market time series

• Show no prominent peaks in their frequency spectrum and can be estimated to

be aperiodic.

• Trajectories have fast decaying memories, although partial autocorrelation is

shown at certain lags. Auto-correlation for squared prices are significant and

decay slowly.

• Linear stochastic models do not fully capture more complex stocks, random walk

series does not account for partial autocorrelation nor the correlation between

different stocks.

• Stocks belonging to the same system show high instantaneous correlation and

smaller time delayed correlation that decays with increasing time difference.

• Linear regression shows non-independence in residuals, suggesting a non-linear

relationship.

• Stocks from different sectors show correlation relationship and have variables

sampled from a small region in probability space. Their probability distribution

functions are asymptotically Gaussian but non-normal.

Our proposal was a set of simultaneous difference equations that simultaneously

map the transformations of two discrete series {X}T0 and {Y }T0 from one state to
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another, i.e.

Yt → Yt+1 and Xt → Xt+1

Analysis suggests that a time dependent, non-linear model that describes the dynam-

ics of two related stocks may be appropriate, with this knowledge, we built a model

under the following assumptions

• A series evolves over time with some contributions from its previous values, this

contribution becomes significantly smaller with increasing time.

• Stock cross correlation varies with time, we hypothesize that this may be related

to the magnitude of difference between one lag and the next.

• A stable dynamic recurrence relation can describe the system given a set of

initial conditions and parameters.

4.1 Model 1

The initial proposal for this recurrence relationship is given by

Yt+1 = Yt + χt∆Yt; (4.1a)

χt = α∆Xt; (4.1b)

Xt+1 = Xt + γt∆Xt; (4.1c)

γt = β∆Yt (4.1d)

Where ∆ is the first order difference operator i.e. ∆Yt = (Yt − Yt−1),The product

of time dependent coefficients χt and γt with the differenced Yt and Xt, respectively,

form a sum with the opposite variable to map determine the transformation. α and

β are linear coefficients of related differenced stock at t. As stated in Chapter 1, we

our goal was to model the movement of sectors and so we solved the above equations

numerically for the S&P500 IT and Industrial sectors. We chose solve the above using

data from the period of 01-01-2016 to 01-08-2016. The χt and γT were solved via the

relationship

χt =
∆Yt+1

∆Yt
(4.2a)

γt =
∆Xt+1

∆Xt

. (4.2b)
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Figure 4.1 shows the form of these coefficients over time, we see that they fluctuate

around zero, however in some instances spikes of very high magnitude are observed.

These spikes occur as prices ’accelerate’ in an instance, i.e ∆Yt is very small compared

to ∆Yt+1. We used OLS regression to determine α and β the results are shown in

Figure 4.1: Top: γ(t). Bottom: χ(t)

Table 4.1. The Pearson’s null hypothesis is rejected for γt regression relationship with

80% confidence, it is not rejected for the 95% confidence interval. For χt correlation

is not rejected for either confidence intervals and therefore we cannot infer if there is

a non-zero correlation. The results of the fits are shown in Figure 4.2. The relatively

large error seen in the regression results is attributed to low correlation, especially

for χt. Failing to reject the null hypothesis is not necessarily its acceptance [36],

correlation could be masked by a non-linear or non-independent relationship or the

lack of enough data points could to a lower p(ρ). We move forward with the analysis

using these results but we bare in mind the large bias that may be associated with

this. Using the original time series as ’previous states’ we simulate new values of Xt

Table 4.1: Regression Results

m± δm α± δα ρ p(ρ)

α -0.0115 ± 0.100 0.0360 ± 0.101 0.003 0.72
β 0.16 ± 0.10 0.30 ± 0.35 0.15 0.17

and Yt. We find that for these coefficients, the model converges to a fixed constant, so
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Figure 4.2: Top: γ(t). Bottom: χ(t)

therefore we can accept that either the parameters are unsuitable or the model itself

is incorrect for our fixed initial conditions ( the stock market). We ran numerical tests

using combination of α and β in the range of (−1 : 1) for multiple significant Figures

and found that the parameters either lead to an unstable trajectory or a convergence

to a fixed point. All recorded results are uploaded online see: [37][38]. So we can say

that given our initial conditions, Equation 1.1 is not a recurrence relation for the two

stocks and some modifications must be made.

We looked at the residuals of the regression, a requirement is that any error be

negligible and completely independent of time, in Figure 4.3 we plotted the resid-

uals and their ACF and PACF. Immediately it is visible that the residuals are

serially correlated, the form of the residuals resembles an MA process we intro-

duced in Chapter 2. Application of ARIMA parameter estimation, we identified

both as an ARIMA(0, 0, 1) with coefficients given by θα,1 = −0.8250 ± 0.043 and

θβ,1 = −0.9335± 0.0300. With the addition of this as an error term, we must there-

fore add the regression constant of χt and γt to the model.
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Figure 4.3: Residuals of the numerical solution for χt (top) and γt(bottom) with ACF
and PACF shown.

4.2 Model 2

The modified model takes the form

Yt+1 = Yt + χt∆Yt; (4.3a)

χt = Cχ + α∆Xt + εt; (4.3b)

Xt+1 = Xt + γt∆Xt; (4.3c)

γt = C+γβ∆Yt + ωt (4.3d)

Where Cχ and Cγ are the regression constants and εt and ωt are the ARIMA models

of the residuals. We made simulations using the modified model, in Figure 4.4 the

simulation results for both time series are plotted. For IT index simulation: µsim =

0.18, µIT = 0.39, σsim = 4.56σIT = 6.14, , for IND: µsim = 0.19, µIND = 0.22, σsim =

2.80, σIND = 3.86. The simulation shows some of the same patterns as the real data,
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however the variance is lower than expected. We determined stationarity through

the ADF and KPSS tests, with results shown in Table 4.2. In Figures 4.5 and 4.6

we show the characteristic ACF, PACF, DFT and estimated probability distribution

of the simulation, for IT and IND, respectively. In both series, the discrepancy

in variance leads to a thinner density function. The ACF and PACF also show a

significant correlation at k = 1, this is expected as map of new states is a linear

combination of the previous state, however it is not understood why this is an anti-

correlation. The frequency spectra shows no dominant peaks, and has a similar form

as the original series. We run 4 more simulations and plot the integrated series to

forecast the price over the next 8 month period. The results shown in Figure ??

show that the trajectories are unable to correctly predict the upward trend seen in

the original series’. A statistical test for independence of two different series is the χ2

1 hypothesis test

χ2 =
∑
i,j

(Observed− Expected)2

Expected
(4.4)

with hypotheses

H0 : Two data sets are independentHA : Two data sets are non-independent

P values for the χ2 test can be obtained from the χ2 distribution. Table 4.4 shows

the results the test, we find that for our simulations, we are not able to reject the null

of independence, meaning that the model likely requires to be modified again.

Table 4.2: Stationarity Test Results

IT Simulation IND Simulation

KPSS ∼ 3 0.22875 0.17292
p(K) 0.30 0.19

ADF, ∼5 -4.7418 -5.7609
p(A) 0.01 0.01

Table 4.3: χ2 test results

IT Simulation IND Simulation

χ2 28392 28223
p(χ2) 0.2393 0.2402

1χ here is not related to the model coefficient
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Figure 4.4: Original and simulation of differenced IT (top) and IND(Bottom), the
blue verticle line shows where the simulation begins.

Figure 4.5: Characteristics of simulation (Top) vs IT (Bottom). In order: Probability
desnity histogram, ACF, PACF and DFT
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Figure 4.6: Characteristics of simulation (Top) vs IND (Bottom). In order: Proba-
bility desnity histogram, ACF, PACF and DFT

Figure 4.7: Several simulation forecasts of IT (left) and IND (Right).
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4.3 Model 3

Next, we modified the model so that previous contributions of Xt and Yt would have

an effect on the outcome of χt and γt, the model proposed was

Yt+1 = Yt + χt∆Yt; (4.5a)

χt = Cχ + α1∆Xt + α2∆Xt−1 + ...+ αn∆Xt−n + εt; (4.5b)

Xt+1 = Xt + γt∆Xt; (4.5c)

γt = Cγ + β∆Yt + β1∆Yt−1 + ...+ βm∆Yt−m + ωt (4.5d)

The values multiple regression coefficients αn and βm can be found through maximis-

ing the likelihood function, for χt the likelihood2 function is

L =
T∏
t=1

N(χt : ∆Xt,αnαnαn, σ
2) = (2πσ2)−T/2 exp

(
−1

2σ2
(χt −αnαnαn∆Xt)

2

)
(4.6)

It is generally easier to maximise the log likelihood

l = −T
2

ln 2π − T

2
lnσ2 − 1

2σ2
(χt −αnαnαn∆Xt)

2 (4.7)

The choice of m and n was chosen somewhat arbitrarily, we knew that these numbers

would be relatively low from the CCF, we tried a combination of different values and

chose the numbers based on a t test of t = αn

σn
and trajectory stability. Results are

shown in Table 4.4. We create a simulation and plot the characteristics as before in

Figure 4.9 and 4.10. Similar to the previous model we see that the probability distri-

bution is less wide than expected, and several peaks in the ACF and PACF appear

when they are not expected. The results of the stationarity and χ2 are shown in Table

4.5. Again we find that we cannot reject the χ2 null hypothesis of non-Independence.

Running several simulations we plotted potential trajectories as forecasts, we see that

one particular trajectory leads to instability.

Although we saw certain agreements, We were unable to produce a model that de-

scribes the two stocks better than the previously discussed models; however it should

be noted that there is a lot of room for modifications and we have only scratched the

surface so far. In the discussion section we go over some of the promising potential

for future work regarding the model.

2Assuming normality
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Table 4.4: Regression Paramters and Residuals

Parameters t statistic P (t)

Cχ -1.26670 ± 0.44768 -2.829 0.00536
α1 -0.01738 ± 0.09467 -0.184 0.85464
α2 0.01764 ± 0.08482 0.208 0.83554
α3 0.02287 ± 0.10013 0.228 0.81969
α4 0.06514 ± 0.10011 0.651 0.51630
α5 -0.14596 ± 0.08481 -1.721 0.08750
εt ARIMA(0,0,0) σ2=0.57
Cγ -1.19703 ± 0.60884 -1.966 0.0513
β1 0.03036 ± 0.07331 0.414 0.6794
β2 -0.04580 ± 0.06570 -1.697 0.0869
β3 -0.09700 ± 0.08043 -1.206 0.2299
β4 -0.09140± 0.08038 -1.837 0.0475
β5 -0.06095 ± 0.06536 -0.932 0.3527
ωt ARIMA(0,0,0) σ2=0.432

Table 4.5: Stationarity results and χ2 test

IT Simulation IND Simulation

KPSS ∼ 3 0.211 0.234
p(K) 0.33 0.23

ADF, ∼5 -4.71 -5.71
p(A) 0.01 0.01

χ2 28382 27823
p(χ2) 0.2387 0.2502
height
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Figure 4.8: Original and simulation of differenced IT (top) and IND(Bottom), the
blue vertical line shows where the simulation begins.

Figure 4.9: Characteristics of simulation (Top) vs IT (Bottom). In order: Probability
density histogram, ACF, PACF and DFT
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Figure 4.10: Characteristics of simulation (Top) vs IND (Bottom). In order: Proba-
bility density histogram, ACF, PACF and DFT

Figure 4.11: Several simulation forecasts of IT (left) and IND (Right).
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Chapter 5

The Effect of News & Sentiment

Analysis

Our study of financial markets so far has looked at relationships within the closed

system of the market; in this chapter we extend the study by looking at how world

events cause changes in the market. In this chapter we look at collective behaviour

(after an world events) and the effect on the market, followed by a sentiment analysis

on news data from a period of 8 months in order to see the relationship between

stock price. Our study of the S&P500 continues here as we use the IT sector and its

constituents (table 1) as our series’.

5.1 Collective Attention: Analysis of Google Trends

As a preliminary, we needed to prove simply that there is a correlation between the

market and world events, Heiberger [39] showed that using the Google Trends[? ]

tool from Google inc. a trading strategy could be created during times of high stock

volatility.

Google Trends (GT) is a publicly available tool from Google that shows how often

a particular term is searched on any of Google’s engines (Web search, Images, News

etc.) by assigning a normalised popularity score ≈ No. of Term searched
Total Volume of Searches

. Google keeps

a record of historical data overtime. We use this to make the assumption that data

gathered from Google Trends from the news search engine is a measure of collective

behaviour of US population and therefore a direct reflection of world events. We

used the top 10 constituent tickers in the S&P500 IT sector as our search terms.
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The data was gathered from 2016-01-01 to 2016-08-01. The data from GT included

weekend data where our stock market series did not; to account for this we removed

the weekend data from our analysis and assumed, for this preliminary experiment,

that the effect is negligible. Figure 5.1 shows an example of the gathered data, for

the search term ”AAPL”. We looked at the correlation between the trends and

both trading volume and stock price. Table 5.1 shows the results of the correlation

coefficient. We find that for stock price the Pearson’s null hypothesis of 0 correlation

cannot be rejected and therefore we cannot say GT is linearly related to stock price.

Correlation is significant for trading volume, however, in almost ever instance the null

hypothesis is rejected for 95% critical value, except for FB and INTEL which were

very close to rejection; showing that there is indeed some linear relationship between

trading volume and GT. We plot this relationship in Figure 5.2 for every stock. Our

result shows that there is indeed some relationship with an outside system and the

’closed’ market system. This result makes sense, as agents get word of events that

may effect certain stocks, they use sites such as Google to gather further information

and make trade decisions, the more agents that are searching the more number of

trades that may occur. What this doesn’t tell us is overall nature of trades, whether

agents are pushing to sell stocks due to a an event that favours the stock badly,

driving the price down, or pushing to buy stocks after news that favours stocks well,

increasing the price. To find this out, we need a measure of news sentiment, i.e. a

quantity that determines how favourable a world event is.

Table 5.1: Correlation Results, Stock Volume, Stock Price and GT data. N = 144.

ρprice p(ρprice) ρV ol p(ρV ol)

AAPL 0.0115 0.85 0.8240 2.2e-16
CSCO 0.0230 0.78 0.5145 3.0e-11

FB 0.0130 0.87 0.1550 0.06185
GOOGL 0.0826 0.318 0.4905 3.3e-10

IBM 0.1330 0.112 0.46256 4.15e-9
INTEL 0.0500 0.52 0.1555 0.055
MSFT 0.0810 0.33 0.6480 2.2e-16
ORCL 0.1230 0.131 0.4212 1.2e-7
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Figure 5.1: Data gathered from Google Trends news for the ticker: AAPL, weekend
data has been omitted.

Figure 5.2: Multiple plots of S&P500 IT sector constituent trading volume vs GT
score with linear trendline included.
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5.2 News Sentiment Analysis

Yue Xu (2009) [40] used an arbitrary measurement system of news articles from the

Yahoo finance in order to test the linear correlation between stock markets and the

news; it was found that at certain time differences there was a small but significant

correlation. The shortcomings of their experiment was that their systematic quan-

tification of news was done arbitrarily and that Yahoo finance news website was not

finely tuned for investors, news data was very mixed and full of irrelevant information.

We looked at sentiment analysis as a more scientifically sound method of quantifica-

tion. O’Connor et al (2010). [41] showed that very basic ”bag-of-words” sentiment

analysis models could be used to show very significant cross-correlation results with

opinion poll results. Alanyali et al (2013) [42] showed that using the Financial Times

as a news source, by analysing the number of mentions of a stock, showed how the

dynamics of stocks and trade decisions change together by studying trading volumes.

Here, we take inspiration from all three papers and develop a model sentimental

analysis technique. Our proposal is that agents read news articles that give insights

to world events which may have consequences to a particular investments, from the

overall sentiment of the article they make a decision to continue their investment in

the stock, buy or sell. The Financial Times is a source attuned for active investors,

with articles and features written by experts in the field who give insights on the im-

plications news articles when required, we hypothesised that the sentiment of these

articles has a direct effect on the agents’ decisions.

5.2.1 Methodology

The source of news used was directly from the Financial Times (FT.com) website,

we used their press cuttings service[43] to look for news articles between the dates

01-01-2016 and 01-08-2016. For each day, we searched for each ticker in the S&P500

IT sector and stored all the relevant news articles (ignoring non-news topics such as

’Home and Lifestyle’) as an accumulated corpus. The FT paper is published daily,

excluding Sundays, this posed a problem for comparison with stocks as the market is

closed on weekends. Our hypothesis is that news may take time to effect the market,

so we approximated the Saturday results by counting them as released on Friday.

We used the text mining libraries ”tm” and ”RWeka” available in R for the anal-

ysis. Each daily corpus was preprocessed by removing special characters such as
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”-”,”?”,”/” and convert all letters into lower case. We separated the corpus in to 1-

length vectors for each word, a process called tokenization, and analysed the resultant

vectors.

We arrive at a sentiment using two different models. The geometric polarity is a

measure of the ratio of frequency of positive corpus vectors and negative ones

gt =
Count(Positive Vector)

Count(Negative Vector)
=

P (Positive Vector |t)
P (Negative Vector |t)

(5.1)

The arithmetic polarity

at = Count(Positive Vector)− Count(Negative Vector) (5.2)

The arithmetic polarity is very much an unnormalised model, while the geometric

is normalised, this allows us to see whether more overall news has an effect on the

market series.

We used the subjectivity lexicon developed by OpinionFinder [44], under GNU

public licence, to determine the counts in sentiment, we align the vectors with the

lexicon of positive and negative words, and count the number of matches. Polarity is

determined from a list of 1300 negative and 1600 positive words.

5.2.2 Resultant Series

Figure 5.3 shows the resultant series for both the geometric and arithmetic polarity,

stationarity was found through both KPSS and ADF tests, shown in table 5.2. The

resultant series shows a very random and fluctuating pattern, similar to a station-

ary market time series; at certain dates, spikes in polarity exist. These can occur

due to a very large/ important event or a series of smaller news articles, comparing

both models can allow us to see the distinction. In Figure 5.4 we plotted the time

series characteristics. For the arithmetic polarity, we observe that the distribution

is asymptotically normal from the histogram and Q-Q plot, with a µ = −2.8 and

σ = 20.4. We see no significant autocorrelation however there is a single significant

partial autocorrelation at k = 12.The DFT shows a very high amplitude at lower fre-

quencies, telling us there is periodicity in news polarity every few days, to distinguish

peaks in other frequencies we would require a filter to the spectra. For the geometric

polarity, the distribution is no longer normal, but a right-skewed curve, fat tails are

confirmed by the Q-Q plot, there is no significant autocorrelation in the series; the
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spectra now shows a very high peak at the lowest frequency - we know this is not due

to non-stationarity, so the series is periodic at the lowest frequency.

Table 5.2: Stationarity Tests

KPSS p(KPSS) ADF p(ADF )

at 0.42789 0.065 -3.6344 0.03259
gt 0.25395 0.13 -3.7296 0.02441

Figure 5.3: Arithmetic (top) and Geometric(bottom) Polarity.

Figure 5.4: Time series characteristics, distribution, Q-Q plot, ACF,PACF and spec-
tra. Arithmetic (top) and Geometric(bottom) Polarity.
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5.2.3 Stock Market Correlation

We calculated the correlation coefficient with the IT index at a number of different

lags of the sentiment ,k, shown table 5.3. There are number of significant results

Table 5.3: Correlation Results :stock price and sentiment data. N = 144.

k ρa p(ρa) ρg p(ρg)

1 -0.098 0.239 -0.091 0.273
2 0.030 0.720 0.0679 0.415
3 0.151 0.081 0.0881 0.291
4 -0.152 0.079 -0.072 0.389
5 0.148 0.079 0.183 0.0287
-1 0.003 0.975 -0.116 0.161
-2 -0.061 0.463 -0.041 0.623
-3 -0.132 0.114 -0.0156 0.852
-4 0.103 0.220 0.0450 0.593
-5 -0.020 0.812 -0.071 0.402

at above 80% interval, however a very the null hypothesis is rejected at above 97%

confidence for gt : k = 5. We plot these correlations (akin to a CCF) in Figures 5.5

and 5.6.

The regression relation for gt : k = 5 is

∆ITt = (−4.927± 0.200) + (5.41± 0.31)gt−5 + εt (5.3)

Where the residuals are found to be NID(0, 7.9), independence is shown by the 0 au-

tocorrelation, Figure 5.7. This result essentially states that news polarity, on average,

has the highest contribution into the market after 5 business days (1 week). We do

see some other notable correlations, and this hints that the models used here require

further development; we discuss improvements to the model in the final chapter.

We simulate the IT time series using equation 5.3 a number of times, shown in

Figure 5.7, applying thr χ2 test with df = 19596 we find χ2 = 19932 which corresponds

to a p value of 0.0457, allowing us to reject the null hypothesis of Independence.
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Figure 5.5: Lag regression plots of arithmetic polarity vs IT. Top: k = 1 : 5. Bottom:
k = −1 : −5

Figure 5.6: Lag regression plots of geometric polarity vs IT. Top: k = 1 : 5. Bottom:
k = −1 : −5. The most significant is k = 5 top right.
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Figure 5.7: Autocorrelation of the residuals of k = 5 regression.

Figure 5.8: Simulations of IT index using geometric polarity as sentiment with k = 5.

70



Chapter 6

Discussion and Conclusion

We set out withe the goals of analysing financial markets through the point of view

of a multi-layered complex system with clear aims set from Chapter one. Here we

will conclude out findings and discuss how well our aims were met. We began by

applying common time series analysis methods, commonly utilised in both statistics

and physics. We showed, by use of statistical tests, that differencing a financial time

series more sufficiently leads to stationarity over linear detrending. We introduced

Fourier transforms and found the frequency spectra of multiple financial time series

and simulations throughout the project using the discrete Fourier transform. The

Fourier transform was useful as a measure of time series characteristic when comparing

with other models and simulations. Similarly, we calculated the autocorrelation and

partial autocorrelation function (ACF, PACF) as another characteristic measure. We

found, for the S&P500 IT sector, that statistically small autocorrelation exists that

decays with time; partial autocorrelation was also found at one month intervals.

Autocorrelation was more significant in financial series with lower trading volume such

as the cotton or copper commodity, all of these make for evidence against the efficient

market hypothesis. We introduced the mathematics of ARIMA models and found that

for system with significant autocorrelation such as the copper series, the linear models

provided a reasonable explanation of their dynamics. We found that for more complex

systems such as the IT index, a random walk was the best fit model. Random walk

as a null hypothesis was rejected using the BDS test for non-linearity in both the IT

and the IND index, suggesting a non-linear system. We then used the correlation

dimension to look for low dimensional chaos within both sectors and found that there

was little evidence for chaos using this method. However this is not to say chaos does

not exist within the stock market, or even within our studied system; studying daily
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data, we were restricted by the number of data points to accurately calculate the

correlation dimension at high embedding dimension. Typically, scientists who study

chaos work with data with lengths of over 100,000, ours had only 1200 - perhaps the

the use of intraday data would lead to different results, this is certainly an avenue

to we could explore in the future. Furthermore, other analysis methods may show

evidence in chaos, utilising methods such as largest Lyapunov exponent or Kolmogrov

entropy are other common methods of measuring chaos, which could be tested for

in the future. We used the inferences made in the previous chapter to propose a

potential model for the relationship between two markets in the form of a simultaneous

recurrence relation. We used the IT and IND data to find parameters of the model in

the deterministic regime and were unsuccessfully in defining stable trajectories that

did not converge. We found that the application of ARIMA models on the residuals

of parameter estimations showed some promise in a stochastic approximation. Our

simulated data agreed with a number of characteristics from the original series but the

independence between the original and simulations could not be rejected even after

modification to include previous lags. There are multiple avenues we could take in

the future with regards to the model, one example is the accounting for non-linearity

in the variance of the series (also known as heteroskedasticity) by adding a variance

term into the model, akin to those termed as GARCH [45].It is also obvious that a

set of constraints need to be added to the model to ensure stability, this would be

another topic of research in the future. We may also look at intraday data as they

have different characteristics, or perhaps the model could be extended to include a

larger number of series than 2. Finally, we looked at the effects outside of the system

by quantifiying the power of news using a simple, novel sentiment analysis model. We

found that a simple linear correlation model describes the relationship between the

IT sector and news sources when the news is described using a geometric polarity. It

is not known, however, if the model will be successful as a trading strategy, perhaps

this is a topic for further investigation. The use of language models as indicators for

systems is a very new field, future prospects could look at machine learning as a more

accurate method of quantifying news data.
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Appendix A

Personal Reflective Statement

I came into fourth year with the impression that I was an especially gifted student

and that I could sail through the project with ease. Dr Matthai showed me almost

instantly that neither was not the case and for that I cannot thank him enough.

Sobering me of my arrogance has been the main factor in allowing me to complete

such a challenging project, that I’m immensely proud of.

And this project was indeed challenging, in fact the most challenging thing I have

ever done, but with all challenges comes great reward and at this point I feel very

rewarded.The first challenge was the decision to use a combination of the program-

ming language R and Python to carry out my analysis as I realised R had potential

where Python did not in time series analysis. This meant that I had to self teach a

new programming language, thankfully this did take much away from the scope of

the project and as a result I am now very well versed in R. Then there was the need

to learn the vast plethora of financial economic theory that I had never been exposed

to previously, as interesting as these turned out to be, it was rather difficult treading

through to learn subjects at a fourth year level. The mathematical methods of time

series analysis were also a field I had never been exposed to as it is not a widely

taught subject at undergraduate physic. There was also the limitations of the data

I was able to find, the availability of financial data is often hidden behind very large

premiums and many interesting avenues of analysis, such as intraday data are largely

expensive to obtain, luckily I was able to find good quality, well sourced data. But

the biggest challenge of all has been the concept of building a mathematical model

from scratch. So much of my time was spent going back and forth looking for different

ways to express my findings.
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However I was also well equipped, thanks to lessons in data analysis and the

general mathematics I learnt in fourth year, I believe I made it through with some

success! The final difficulty came in how this project was to be presented, having to

explain a topic within a different discipline and at the same time at a Masters level

is no easy task. I decided that It would be very beneficial to the reader to build up

the more basic things in relatively high detail and move on with the more complex

more quickly as the reader got the hang of things. The consequence of this was that

the dissertation had a very large number of pages as I used figures to explain many

of the findings.

Thank you for taking the time to read this dissertation, I hope that it was as

enjoyable to read as it was to write.

Arman Tadjrishi
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